Power Drag Post-Lab Assessment Answer Key

Instruction: After completing the lab, answer the following questions.

1. How does the work done on the objects compare with the different weights? Example: The bigger the weight, the \qquad bigger \qquad the work done.
2. Which one has more power, the fast movement one or the slow movement one? Explain your choice.
The faster one; since $\mathrm{P}=\mathrm{W} / \mathrm{t}$, the smaller the value of t , the bigger the power.
3. What are the factors that determine the work done on an object? (Hint: See the equation.) Force and displacement
4. What are the factors that determine the power used on an object? (Hint: $\mathrm{P}=\mathrm{W} / \mathrm{t}$) Work and time; also $\mathrm{P}=\mathrm{F} \times \vee$ (force and velocity)
5. A $2-\mathrm{kg}$ box is pushed a distance of 3.67 m by a force of 300 N . How much work was done on the box?
$W=F \times d=300 \times 3.67=1,101 \mathrm{~J}$
6. A $4,500 \mathrm{~J}$ amount of work is applied to a $2.2-\mathrm{kg}$ ball that moved a distance of 3.3 m . How much force was applied to the ball?
$F=W / d=4500 / 3.3=1,363.6 \mathrm{~N}$
7. If a cart is pushed by a force of 300 N with 4500 J of work, how much distance did it move? $d=W / F=4500 / 300=15 \mathrm{~m}$
8. A box is lifted up in 15 seconds by applying $2,000 \mathrm{~J}$ of work on it. How much power was applied on the box?
$P=W / t=2000 / 15=133.3 \mathrm{~W}$
9. A box is pushed with a force of 100 N that moved it a distance of 15 m in 20 seconds. How much power was applied on the box?
$P=W / t$, get $W=F \times d=100 \times 15=1500 \mathrm{~J}$, then $P=W / t=1500 / 20=75 \mathrm{~W}$
10. How much work was applied on a box pushed for 10 seconds by a machine with 300 W power? $W=P \times t=300 \times 10=3000 \mathrm{~J}$
