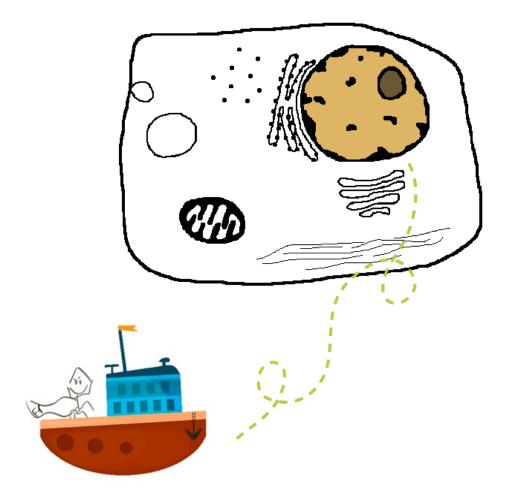
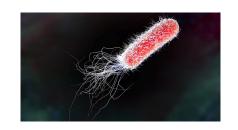
Teach Engineering STEM Curriculum for K-12

BACTERIOPHAGE BUILDER CHALLENGE



Bacteriophage Builder

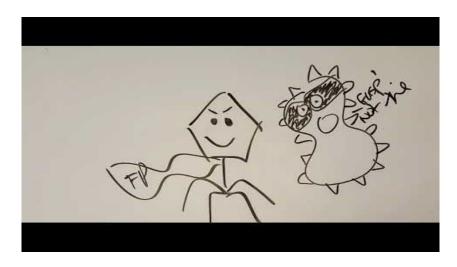
Do First: Think of a time when you were sick...


- 1. Sit in groups of 3-4 people
- 2. Grab a worksheet and pen/pencil
- 3. On the paper:
 - Describe a time when you were sick. How did you feel?
 - What do you think caused you to feel sick?
 - Draw on the paper what you think the cause of your sickness looked like.

What causes sickness?

- PATHOGENS!
 - Viruses
 - Bacteria
 - Parasites

 Today we will be focusing on viruses and bacteria



Not all Viruses are bad!

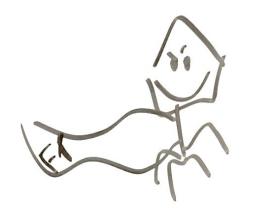
- Bacteriophages are viruses that infect harmful bacteria
- Phages can be used to disrupt or kill biofilms made by bacteria

Define the Problem

 On your paper, define the problem in your own words based on what you saw in the video

"___ need a way to ___ in order to ___."

 Problem: we need a way to engineer viruses to infect as many bacteria as possible in order to eliminate harmful biofilms from water filters

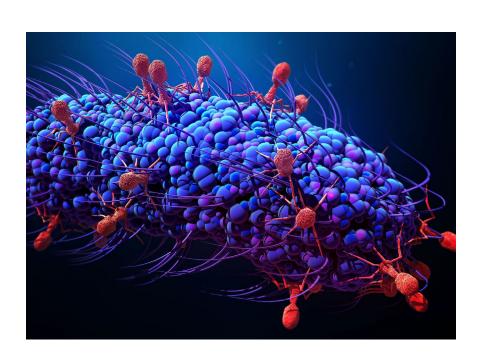


Building Materials

- You will have access to these materials to build your virus in only 15 min
 - o foam cubes
 - Styrofoam balls
 - soft Velcro
 - spiky Velcro
 - toothpicks
 - double-sided tape
 - fuzzy pom-poms
 - paper

Identify Criteria & Constraints

• On your paper, identify at least TWO criteria


"Our design must be able to ___."

Think: how will you know your design is successful?
 ex. When building a ladder, one criteria is that it reaches at least 10 feet high.

Must be able to attach to at least 10 bacteria cells; Must be able to attach to at least 3 types of bacteria; etc.

- On your paper, identify at least TWO constraints
 - "When building our design, we are limited by __."
 - Think: what *limitations* are there on your design?
 ex. When building a ladder, I'm limited to using only the materials from my garage. We are limited by amount of time (15 min.)
 We are limited by size of the virus

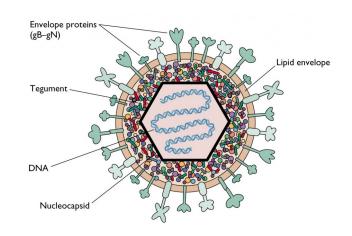
A quick note: These models are not to scale

- The models you are making do not accurately represent the size difference between bacteria and phages.
- Phages are much smaller than the bacteria they infect
- However, this would make it difficult for you to engineer in this activity, so the size difference is switched.

What is a nanometer?

- Nanometer
- 1 one-billionth of a meter

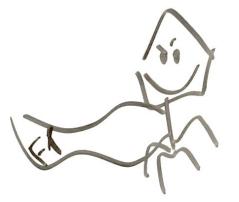
Bacteria: 200-2,000 nm Viruses: 20-400 nm


Imagine as a Meter

Would be nanometer

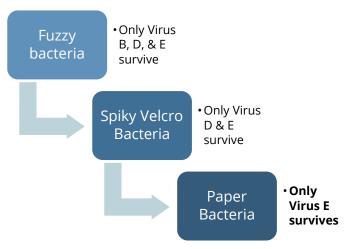
Brainstorm Design

- On your paper, brainstorm a design
 - Draw a sketch of what it will look like
 - Identify the materials you will use
- Consider these questions as you are making your design
 - What do viruses need to be able to do in order to infect the bacteria?
 - What materials do you think will fit/stick together the best?
 - How does the shape impact how it can infect the bacteria?
 - If we are trying to infect lots of harmful bacteria, should the virus have only one type of attachment?



Maker Time!

- You have access to these materials to build your virus in only 15 min
 - foam cubes
 - Styrofoam balls
 - soft Velcro
 - spiky Velcro
 - toothpicks
 - double-sided tape
 - o fuzzy pom poms
 - o paper
- When finished with first prototype, bring over your virus to the biofilms for testing! Not perfect? Make adjustments!



Communicate Solution

- Okay, engineers, it's time to communicate your solution! Pick a name for your virus & write it on whiteboard!
- You will need to present the following items to the group.
 - Brainstorming Process
 - Initial Prototype
 - Iteration (changes to first prototype)
 - Final Design
 - Results from Testing (which biofilms did infect best?)
 - Ideas for the Future

Test your Solution

- In order to isolate the fittest phage to destroy our biofilm, we need to pick the one that can survive & reproduce with multiple different bacterial hosts.
- To find this fantastic phage, we will follow the same procedure that scientists use to pick their phages!

Reflection Questions

- With your groupmates, answer the reflection questions
 - Did your model meet your criteria and constraints? Why/why not?
 - Did you make any changes to your model after testing?
 - In what ways was your design successful? What helped to make it successful?
 - In what ways could your design be improved?