\qquad
\qquad Class: \qquad

Cost Efficiency Worksheet

The power output of your pump $\left(\mathrm{P}_{\mathrm{O}}\right)$ can be given by $P_{o}=\gamma Q H_{P}$, where γ is the specific weight of water $\left(\gamma=62.4 \mathrm{lbs} / \mathrm{ft}^{3}\right), \mathrm{Q}$ is the flow of the pump, and H_{P} is the head the pump must overcome.
To begin, get everything in matching units. To find flow, measure how many gallons of water your pump can move in a given time. Covert the time to seconds, and gallons to $\mathrm{ft}^{3}\left(\right.$ Hint: 7.48 gallons $\left.=1 \mathrm{ft}^{3}\right)$. Also convert to feet the height difference between the two buckets.

Volume: \qquad $\left[\mathrm{ft}^{3}\right]$

Time: \qquad [s]

$$
\mathrm{H}_{\mathrm{P}}=[\mathrm{ft}]
$$

Flow is a volume per time. In order to get the flow, divide the volume by the time:
Flow, $\mathrm{Q}=$ \qquad $\left[\mathrm{ft}^{3} / \mathrm{s}\right]$

Calculate the power output of your pump using the equation:
$P_{o}=\gamma Q H_{P}^{*}(1.356[$ watts]/ [ft lb/s])

$$
P_{0}=
$$

\qquad [watts]

Finally, we want to know how cost effective your pump is. Divide total cost by your power output. ($\$ / P_{o}$)
$\mathrm{e}=$ \qquad [\$/watts]

Discussion Questions

What factors made your pump a good design?

What was the most expensive aspect of your design? How could you reduce cost in this area?

What would you change in future designs?

